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1 Introduction

The AdS/CFT correspondence provides one of the best ways to explore the nonperturbative

regimes of a certain class of strongly coupled quantum field theories by working in classical

gravity. Conversely, from the viewpoint of black hole physics, we may be able to understand

strong gravitational phenomena by studying an appropriate limit of field theories. In this

paper, we investigate a class of AdS black holes, in particular, their phase structures and

possible phase transitions, via the fluid/gravity correspondence (see, e.g., [1, 2]), which has

been proposed as a generalization of the AdS/CFT correspondence.

Recently, Aharony, Minwalla, and Wiseman [3] argued that in a class of large-N gauge

theories, a plasma ball (i.e., a lump of ‘gluon’ plasma) appears via a first-order deconfine-

ment phase transition above a critical temperature. They also claimed that such a plasma

ball will map to a finite energy black hole localized in the IR (infrared) region, and discussed

what happens on the gravity side by studying various phenomena on the fluid side such as
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a plasma ball production and its subsequent decay by hadronization. In particular, they

explicitly constructed a numerical domain wall solution to the Einstein equations with a

negative cosmological constant which smoothly interpolates two spacetimes corresponding

to the confined and deconfined phases. As a generalization of the analysis in [3], Lahiri and

Minwalla [4] constructed a rotating plasma ring and a ball, which are dual to a rotating

black ring and a rotating black hole, respectively (see also [5]). By construction (which we

will briefly review in the text), these gravity duals reside in the IR region of AdS space

compactified on a Scherk-Schwarz circle. This kind of black ring and hole solutions have

not been discovered yet. However, by comparing the phase diagrams of a plasma ring and

plasma ball with those of a black ring and black hole in an asymptotically flat space, they

found qualitative agreements between them.

In this paper, we investigate the phase structures of another important class of black

objects, i.e., black strings and black holes in a spacetime in which some spatial dimensions

are compactified, from the viewpoint of the fluid/gravity correspondence (see [6] for the

analysis on a similar system from a holographic viewpoint). We solve the d-dimensional

relativistic Navier-Stokes equations [2] with an appropriate surface term to obtain static

axisymmetric fluid equilibrium configurations. The configurations contain a spherical ball,

a uniform tube, and a non-uniform tube. To see what their gravity duals are, we recall the

arguments in [3]. We consider the following solution to the (d + 2)-dimensional Einstein

equations with a negative cosmological constant, Rab = −(d+ 1)ℓ−2gab:

ds2d+2 = ℓ2
(

e2u[−dt2 + T2π(u)dθ2 + dw2
i ] +

1

T2π(u)
du2

)

, (1.1)

where i = 1, 2, . . . , d− 1, and θ ∈ [0, 2π). The function Tx(u) is defined by

Tx(u) = 1 −
[ x

4π
(d+ 1)eu

]−(d+1)
. (1.2)

This spacetime is regarded as an AdSd+2 space with a Scherk-Schwarz compactification,

which is called the AdS soliton [7]. By taking u → ∞, one recovers the AdSd+2 in the

Poincaré coordinates with a uniform circle of θ. It should be noted that there is a cutoff

in the IR region (i.e., small-u region) since the Scherk-Schwarz circle shrinks to a point at

a finite value of u. Imposing a periodicity in the imaginary time, i.e., τ ≡ τ + β, (τ = it),

one can regard this spacetime as a thermal gas of gravitons at temperature T = β−1. In

addition, there exists another exact solution

ds2d+2 = ℓ2
(

e2u[−Tβ(u)dt2 + dθ2 + dw2
i ] +

1

Tβ(u)
du2

)

, (1.3)

which has the same asymptotics as the spacetime (1.1). This solution can be regarded as a

black brane with temperature T = β−1. Considering both spacetimes, eqs. (1.1) and (1.3),

together in an ensemble, one can show that in the low temperature regime (T < Tc = 1/2π)

the AdS soliton (1.1) has a lower free energy, while in the high temperature regime (T > Tc)

the black brane (1.3) has a lower free energy and dominates. Thus, the system undergoes

a Hawking-Page type phase transition at T = Tc [7, 8].
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In [3, 4], the plasma balls and plasma rings which extend uniformly in the θ-direction

and non-uniformly in the wi-directions (which are assumed to be noncompact) were con-

structed on the UV (ultraviolet) boundary by solving the fluid equations.1 In this paper,

we compactify one of wi’s on a circle, which we denote by coordinate z, and consider the

plasma tube and plasma ball, where the former wraps the circle of the z-direction. As

described in [4], the horizon topology of a dual black object is obtained by fibering the

plasma configuration with an S1 that shrinks to zero size at the fluid edges.2 Therefore,

the plasma ball Bd−1 and plasma tube Bd−2 ×S1, which we will obtain in this paper, map

to the black objects whose horizon topologies are Sd and Sd−1 ×S1, respectively. Namely,

they are a black hole and a black string, respectively, in an asymptotically AdSd space on

the Scherk-Schwarz circle Sθ and Kaluza-Klein circle Sz.

The gravity dual of the plasma tube obtained in this paper is rather different from

the black string solutions in an asymptotically locally AdS space which have been studied

extensively in the literature [9], as well as from the black strings in the asymptotically

locally flat Kaluza-Klein space. We will see, however, that the thermodynamic properties

of our AdS black hole-black string system display various qualitative similarities to those

of the black hole-black string system in the asymptotically locally flat Kaluza-Klein space.

The phase transitions and their dimensional dependence will be elaborated in this paper.

This paper is organized as follows. In section 2, we reduce the Navier-Stokes equations

for a plasma fluid to a hydrostatic equation for axisymmetric equilibrium states. We then

demonstrate that this equation is equivalent to that of Plateau’s problem (or capillary

minimizing problem), obtaining the constant mean curvature surfaces which model soap

bubbles with a variational principle. In addition, we show that the uniform plasma tube

is unstable against a perturbation, which is the fluid counterpart [10–12] of the Gregory-

Laflamme instability [13]. In section 3, an equation of state for the fluid is introduced

which is obtained from the Scherk-Schwarz compactification of a conformal field theory.

The thermodynamic variables for each phase are then calculated. In section 4, the ther-

modynamic phase structures are obtained. The final section is devoted to a summary and

discussion. A technical issue about numerical integrations is treated in appendix A. A jus-

tification of numerical results and a natural interpretation of phase diagram are described

in appendix B.

Note added. During the preparation of this paper, we were informed that a similar work

had been completed independently [14]. It is interesting to compare their results with ours.

1Note that the dual black holes and black rings also extend in the u-direction, although they are localized

in this direction.
2This condition on the shrinking of the S1 circle corresponds to the fact that at the IR wall mapped

from the outside of the plasma, the Scherk-Schwarz circle shrinks to zero size.

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
6

Figure 1. An axisymmetric static equilibrium state of fluid in a d = (n + 3)-dimensional flat

spacetime schematically embedded in a three dimensional space.

2 Hydrostatics of axisymmetric plasma lumps

2.1 Relativistic Navier-Stokes equations

The equation of motion for the boundary fluid is simply given by the conservation of the

stress tensor [2],

∇µT
µν = 0. (2.1)

The stress tensor consists of the perfect fluid part, the dissipative part, and the surface

contribution in a certain long wavelength limit as

T µν = T µν
perfect + T µν

surface + T µν
dissipative, (2.2)

where the perfect fluid part takes the usual form as

T µν
perfect = (ρ+ P )uµuµ + Pgµν (2.3)

with the pressure P , proper energy density ρ, and velocity field uµ. The surface contribution

can be written as

T µν
surface = σ(nµnν − gµν)

√
∂Φ · ∂Φ δ(Φ) (2.4)

with σ being a tension of the boundary. We have assumed that the surface of the fluid

is given by Φ(xµ) = 0 and the unit normal of this surface is denoted by nµ := ∂µΦ(∂Φ ·
∂Φ)−1/2. For static fluids which we will study in this paper one can show the dissipative

term does not contribute to the equation of motion.

Now, we consider a d = (n + 3)-dimensional flat spacetime (n ≥ 1)3 in cylindrical

coordinates xµ = (t, z, r, φi), (i = 1, 2, . . . , n),

gµνdxµdxν = −dt2 + dz2 + dr2 + r2γij(φ)dφidφj

= ηabdx
adxb + r2γij(φ)dφidφj, (2.5)

where xa = (t, z, r), ηab = diag.(−1, 1, 1) and γijdφ
idφj is the line element of the unit

n-sphere. Non-zero components of the Christoffel symbol are

Γa
ij = −rδa

rγij , Γi
ja = r−1δr

aδ
i
j , Γi

jk = Γ̄i
jk, (2.6)

3 In fact, the conformal boundary, where the plasma fluid resides, is (d + 1)-dimensional if we take into

account the existence of the Scherk-Schwarz circle, in which direction we assume the fluid configuration is

uniform. Therefore, the total spacetime dimension of the AdS bulk is d + 2.
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where the bar is used for the variables with respect to the metric γij . Assuming that the

fluid is static in this frame (uµ = δµ
t ), the perfect fluid part of the stress tensor and its

divergence are given by

T µν
perfect =











ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 r−2Pγij











, ∇µT
µν
perfect =

(

0,
∂P

∂z
,
∂P

∂r
, 0

)

, (2.7)

where we have used an identity ∇̄iγjk ≡ 0. The boundary surface of an axisymmetric fluid

configuration can be given by Φ(z, r) := r − h(z) = 0, where h(z) is a height function (see

figure 1) assumed to be a single-valued function. Then, noting that the unit normal vector

nµ is given by

nµ =
1√

1 + h′2

(

δµ
r − h′δµ

z

)

, h′ := ∂zh, (2.8)

the surface contribution to the stress tensor and its divergence are given by

T µν
surface =

σδ(r − h)√
1 + h′2











1 + h′2 0 0 0

0 −1 −h′ 0

0 −h′ −h′2 0

0 0 0 −r−2(1 + h′2)γij











,

∇µT
µν
surface = σδ(r − h)

(

0,−(n+ 1)h′H, (n+ 1)H, 0
)

. (2.9)

Here, H is the mean curvature of the surface defined by

H(z) :=
1

n+ 1

(

− h′′

(1 + h′2)3/2
+

n

h
√

1 + h′2

)

. (2.10)

The first and second terms in the parenthesis correspond to the axial and azimuthal prin-

cipal curvatures of the surface, respectively (see, e.g., [12]).

The non-trivial components of eq. (2.1) are

∂P

∂z
− (n+ 1)σδ(r − h)h′H = 0,

∂P

∂r
+ (n+ 1)σδ(r − h)H = 0. (2.11)

Away from the boundary r = h(z), we have the equation in the bulk, which gives

P (z, r) = const. (2.12)

Integrating the equations of motion across the boundary, we have

P> − P< + (n+ 1)σH(z) = 0, (2.13)

where P> and P< are the pressures just outside and inside the boundary, respectively.

Now, we consider the case in which the pressure outside vanishes (P> = 0) for simplicity.

Then, eq. (2.13) reads

1

n+ 1

(

− h′′

(1 + h′2)3/2
+

n

h
√

1 + h′2

)

=
P<

(n+ 1)σ
=: H0. (2.14)
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This is the governing equation that determines the axisymmetric equilibrium states of the

fluid. This equation implies that the fluid surface is given by a constant mean curvature

surface. As we will see, this equation is derived by a variational principle which minimizes

the surface area of the fluid while keeping the volume fixed. A uniform tube found as a

trivial solution of eq. (2.14) will suffer from the Rayleigh-Plateau instability.4

2.2 The equivalent plateau problem and Rayleigh-Plateau instability

In general, the interior volume and surface area of a fluid body are written as

V =

∫

interior
dV, A =

∫

surface
dA. (2.15)

When we assume the staticity and axisymmetry of the fluid of which surface is given by

r = h(z), the induced metric on the surface is given by

ds2surface = −dt2 + (1 + h′2)dz2 + h2γij(φ)dφidφj. (2.16)

Now, we assume that the z-direction is compactified on a circle, z ∈ [−L/2, L/2].5 Noting

that the volume and surface elements in eq. (2.15) are given by dV = rn√γ dr∧dz∧dφ1 ∧
· · · ∧ dφn and dA = hn

√

(1 + h′2)γ dz ∧ dφ1 ∧ · · · ∧ dφn, we have

V [h] = Ωn

∫ L/2

−L/2
dz hn+1(z), A[h] = (n+ 1)Ωn

∫ L/2

−L/2
dz

√

1 + h′2 hn(z),

Ωn :=
1

n+ 1

∫

Sn

√
γ dφ1 ∧ · · · ∧ dφn =

π(n+1)/2

Γ[(n+ 1)/2 + 1]
. (2.17)

The equation of motion for the configuration that minimizes (or extremalizes) the

surface area for a given volume is obtained by varying the action

I[h] := σ0A[h] − p0V [h]. (2.18)

Here, the constant σ0 corresponds to the surface tension, while the constant p0 corresponds

to the pressure, but it is just a Lagrange multiplier to mathematically ensure that the

volume is fixed. The Euler-Lagrange equation obtained by variation (δhI = 0) is equivalent

to eq. (2.14) with the identification of p0 ↔ P< and σ0 ↔ σ.

It is noted that by adding a term corresponding to the rotation energy to the ac-

tion (2.18), which is roughly given by −ωJ with an angular velocity ω and an angular mo-

4The axisymmetric constant mean curvature surfaces in general dimensions were obtained in [11], and

their geometric properties were investigated to compare those of black strings.
5This compactification corresponds to compactifying a spatial direction of the field theory coordinates in

the Poincaré patch from the AdS point of view. However, it does not introduce the problem of singularities

in the asymptotic IR region since the IR is cutoff by the horizon or the shrinking of the Scherk-Schwarz

circle. We would like to thank T. Wiseman for discussion on this point.
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mentum J , the equation of h(z) for a rigidly rotating non-relativistic fluid is obtained. In

the rotational case, the surface deviates from a constant mean curvature surface [4, 5, 10]6

Equation (2.14) has two trivial solutions representing a uniform tube (UT) and a

spherical ball (SB),

h = hUT := r0, H = HUT :=
n

(n+ 1)r0
,

h = hSB :=
√

R2
0 − z2, H = HSB :=

1

R0
. (2.19)

As is well known, a translationally invariant cylindrical body is unstable if the linear

dimension is longer than its circumference in d = 4 (the Rayleigh-Plateau instability). Its

onset mode in general dimensions is obtained by the following static perturbation of the

uniform tube [10, 11]. First, we expand h(z) around the uniform tube,

h(z) = r0 + εh1(z) +O(ε2). (2.20)

Substituting this expansion into eq. (2.14), we have the linear perturbation equation

at O(ε),

h′′1 +
(n+ 1)2H2

UT

n
h1 = 0. (2.21)

With a boundary condition, say h′1(0) = 0, we have

h1(z) = h(1) cos (kRPz) , kRP :=

√
n

r0
, (2.22)

where h(1) is an integration constant. Solution (2.22) corresponds to the marginally stable

mode of the Rayleigh-Plateau instability. The uniform tube is unstable if the length of the

cylinder L satisfies L > LRP := 2π/kRP. In other words, the uniform tube is unstable if the

radius r0 satisfies r0 < rRP :=
√
nL/2π for a given L. This dimensional dependence of the

critical mode is quite similar to that of the Gregory-Laflamme instability. See refs. [10–12]

for more on the similarities between the Rayleigh-Plateau and Gregory-Laflamme instabil-

ities.

3 Equation of state and thermodynamic variables

In order to investigate the thermodynamic properties of the fluid lumps in the context of

AdS/CFT, we introduce an equation of state for the plasma fluid. Then, the thermody-

namic variables for each phase of fluid lumps are calculated.

6See ref. [14] for more general relations between the equation of motion (2.13), called the Young-Laplace

equation, and variational principles. They showed that in a fully covariant way the Young-Laplace equation

can be obtained by variational principle of either the entropy maximization or potential energy minimization.

It was also shown that these two variational principles reduce to the area minimization with volume fixing

in the static situation. Its special case corresponds to ours. Their general proofs nicely relate the Young-

Laplace equation (derived from the Navier-Stokes equation), thermodynamic equilibrium condition (the

entropy maximization), mechanical equilibrium condition (the potential energy minimization), geometrical

condition (the area minimization). More importantly it also supports the original argument in [3] (and our

thermodynamic consideration in section 4), that the thermodynamics of finite energy black holes in the

Scherk-Schwarz compactified AdS is mapped holographically to that of deconfined plasma lumps held by

surface tension. The authors thank an anonymous referee for letting us know this point.
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3.1 Equation of state

The equation of state for the plasma is obtained by the Scherk-Schwarz compactification of

a (d+ 1)-dimensional conformal field theory [3]. The free energy in terms of temperature

T and volume V is given by

F =
(

ρ0 − αT d+1
)

V, (3.1)

where ρ0 is a vacuum energy and α is some constant. The pressure P , entropy S, and

energy E are given by

P = −
(

∂F
∂V

)

T

= −ρ0 + αT d+1,

S = −
(

∂F
∂T

)

V

= (d+ 1)αVT d,

E := F + TS =
(

ρ0 + dαT d+1
)

V. (3.2)

We then introduce the energy density ρ and entropy density s, given as

ρ :=
E
V = ρ0 + dαT d+1,

s :=
S
V = (d+ 1)α1/(d+1)(ρ0 + P )d/(d+1). (3.3)

From the parameters ρ0, σ, and α, a characteristic length scale (whose existence vio-

lates the conformal invariance), temperature, and entropy density can be defined as

l0 :=
σ

ρ0
, Tc :=

(ρ0

α

)1/(d+1)
, s0 :=

(

αρd
0

)1/(d+1)
. (3.4)

The temperature in eq. (3.4) is nothing but the critical temperature of the confine-deconfine

phase transition which occurs at f := F/V = −P = 0.

Now, we consider the thermodynamic variables for the plasma lumps, that is, not only

those for their constituent plasma but also the contributions from the surface term. Their

energy density and entropy density are given by

T tt = ρ+ σδ(r − h)
√

1 + h′2,

s = (d+ 1)s0

(

T

Tc

)d

. (3.5)

The energy, entropy, and Helmholtz free energy for the plasma lumps can be obtained by

integrating the above densities,

E =

∫

(

T tt
perfect + T tt

surface

)

dV = ρV + σA,

S =

∫

sdV = sV,

F = E − TS = −PV + σA, (3.6)

– 8 –
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where we have used that the energy density and entropy density are constant in the

present system.

From the relations of P = −ρ0 +αT n+4 and P = (n+ 1)σH (note that d = n+ 3), we

obtain a relation between the temperature T and mean curvature H,

T = Tc

[

1 + (n + 1)l̃0HL
]1/(n+4)

, l̃0 :=
l0
L
. (3.7)

We will discuss later a physically reasonable choice of the dimensionless parameter l̃0.

It is convenient to define the following normalized dimensionless variables when we

draw phase diagrams,

Ê :=
E

ERP
, Ŝ :=

S

SSB
, F̂ :=

F

FSB
, T̂ :=

T

TRP
, (3.8)

where ERP and TRP are the energy and the temperature of the critical uniform tube, and

SSB and FSB are the entropy and free energy of the spherical ball, respectively, which are

given in the following subsection.

3.2 Uniform tube and spherical ball phases

For the uniform tube, hUT(z) = r0 with the length L, we can obtain the thermodynamic

variables as functions of single parameter r0/L,

EUT =ρ0
ΩnL

n+2

n

[

(n2+4n+1)T̃ n+4
UT −1

](r0
L

)n+1
, SUT =s0(n+4)ΩnL

n+2T̃ n+3
UT

(r0
L

)n+1
,

FUT = ρ0
ΩnL

n+2

n

(

T̃ n+4
UT − 1

) (r0
L

)n+1
, TUT = Tc

[

1+nl̃0

(

L

r0

)]1/(n+4)

, (3.9)

where T̃UT := TUT/Tc. The critical values for the RP instability are obtained just by

setting r0 = rRP (=
√
nL/2π) in eq. (3.9). For instance, the energy and temperature of

the critical tube are given by

ERP =ρ0
ΩnL

n+2

n

(√
n

2π

)n+1
[

(n2+4n+1)T̃ n+4
RP −1

]

, TRP =Tc

(

1+2π
√
n l̃0

)1/(n+4)
, (3.10)

where T̃RP := TRP/Tc.

For the spherical ball, hSB(z) =
√

R2
0 − z2 in the period L, we have the thermodynamic

variables as functions of a single parameter R0/L,

ESB = ρ0
Ωn+1L

n+2

n+ 1

[

(n2 + 5n + 5)T̃ n+4
SB − 1

]

(

R0

L

)n+2

,

SSB = s0(n+ 4)Ωn+1L
n+2T̃ n+3

SB

(

R0

L

)n+2

,

FSB = ρ0
Ωn+1L

n+2

n+1

(

T̃ n+4
SB −1

)

(

R0

L

)n+2

, TSB =Tc

[

1+(n+1)l̃0

(

L

R0

)]1/(n+4)

, (3.11)

where T̃SB := TSB/Tc.
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(a) (b)

Figure 2. (a) The non-uniform tube in d = 4 is called Delaunay’s unduloid in geometry, which

is the surface of revolution of an elliptic catenary. The elliptic catenary is obtained by rotating

an ellipse along a line (i.e., the z-axis) and tracing the focus, marked by small solid circles. (b)

A schematic picture of the potential U(w), defined in eq. (3.15), for three values of λ = w
−
/w+.

From the top curve to the bottom, the value of λ decreases within the range 0 < λ < 1.

According to the definition (3.8), we have the following dimensionless quantities,

ÊUT =

(

2π√
n

)n+1 (n2 + 4n + 1)[1 + nl̃0(L/r0)] − 1

(n2 + 4n+ 1)(1 + 2π
√
n l̃0) − 1

(r0
L

)n+1
,

ŜUT =
Ωn

Ωn+1

[

1 + nl̃0(L/r0)

1 + (n+ 1)l̃0(L/R0)

](n+3)/(n+4)
(r0
L

)n+1
(

L

R0

)n+2

,

F̂UT =
nnΩn

(n + 1)n+1Ωn+1

T̃ n+4
UT − 1

l̃0
, T̂UT =

[

1 + nl̃0(L/r0)

1 + 2π
√
n l̃0

]1/(n+4)

(3.12)

for the uniform tube phase, and

ÊSB =
nΩn+1

(n+ 1)Ωn

(

2π√
n

)n+1 (n2 + 5n+ 5)[1 + (n+ 1)l̃0(L/R0)] − 1

(n2 + 4n+ 1)(1 + 2π
√
n l̃0) − 1

(

R0

L

)n+2

,

T̂SB =

[

1 + (n+ 1)l̃0(L/R0)

1 + 2π
√
n l̃0

]1/(n+4)

, ŜSB = F̂SB ≡ 1 (3.13)

for the spherical ball phase.

Now, for each value of l̃0, which should be specified, we obtain thermodynamic relations

such as Ŝ = Ŝ(Ê) and F̂ = F̂ (T̂ ) implicitly via the parameter r0/L ∈ [0,+∞) for the

uniform tube phase and via R0/L ∈ [0, 1/2] for the spherical ball phase, respectively.7

Note that due to the fact R0 ≤ L/2 (i.e., the condition that a ball fits the period), the

spherical ball phase has an upper bound of energy and a lower bound of the temperature.

7Because we normalize the entropy by that of the spherical ball, eq. (3.8), the expression of ŜUT in

eq. (3.12) contains the radius of the spherical ball R0. When one draws the (ÊUT,ŜUT) curve by varying

the parameter r0, this R0 should be regarded as a function of r0. Such a relation R0 = R0(r0) is obtained by

the combination of R0 = R0(Ê) obtained by inversing the relation in eq. (3.13) and Ê = Ê(r0) in eq. (3.12).

Similar transformations are needed to draw the (ÊNUT,ŜNUT) curve [see ŜNUT in eq. (3.18)].

– 10 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
6

3.3 Non-uniform tube phase

As given in the preceding sections, eq. (2.14) is solved by the uniform tube and the spherical

ball. In addition to these two solutions, eq. (2.14) allows the third solution, which is a non-

trivial constant mean curvature surface corresponding to the non-uniform tube (NUT) [11].

For the d = 4 case, this solution is known as Delaunay’s unduloid [15], which is the

surface of revolution of an elliptic catenary [see figure 2(a)]. Although a certain parametric

representation of the curve is known for the d = 4 case, for d > 4, we have to integrate

eq. (2.14) numerically. As we will see below, if we introduce a ‘non-uniformness parameter’

λ := r−/r+, where r− and r+ are the smallest and largest radii of a non-uniform tube, all

non-uniform tube solutions are described by a one-parameter family of λ, (0 < λ < 1).

First, we introduce the following dimensionless variables,

y := H0z, w := H0h(z), (3.14)

where H0 is the mean curvature of the non-uniform tube. Then, the first integral of

eq. (2.14) is written in a potential form,

(

dw

dy

)2

+ U(w) = 0 , U(w) := 1 −
(

wn

wn+1 +K

)2

, (3.15)

where K is an integration constant. We assume that there are two zero points of the

potential U(w) denoted by w+ and w− (0 < w− < w+). w+ and w− correspond to the

maximum and minimum (dimensionless) radii of the non-uniform tube, respectively. Thus,

λ = w−/w+ → 0 and λ → 1 correspond to the ball and the critical tube, respectively [see

figure 2(b) for a schematic picture of U(w)]. If we first give a λ, from U(w±) = 0, we obtain

w+ =
1 − λn

1 − λn+1
, w− =

λ(1 − λn)

1 − λn+1
, K =

(1 − λ)λn(1 − λn)n

(1 − λn+1)n+1
. (3.16)

Using dz = (dz/dh)dh = dw/(H0

√
−U), one can express the period L, surface area A and

volume V per the period in terms of λ and H0,

LNUT =
2

H0

∫ w+

w−

dw
1

√

−U(w)
=:

1

H0
L̃(λ),

ANUT =
2(n+ 1)Ωn

Hn+1
0

∫ w+

w−

dw wn

√

1 − U(w)

−U(w)
=:

(n+ 1)Ωn

Hn+1
0

Ã(λ),

VNUT =
2Ωn

Hn+2
0

∫ w+

w−

dw
wn+1

√

−U(w)
=:

Ωn

Hn+2
0

Ṽ (λ). (3.17)

As a result, for the non-uniform tube, we can obtain the thermodynamic dimensionless

quantities as functions of the non-uniformness parameter λ,

ÊNUT = n

(

2π√
n

)n+1 [(n+ 3)Ṽ + Ã][1 + (n+ 1)l̃0L̃] + Ṽ − Ã

[(n2 + 4n+ 1)(1 + 2π
√
n l̃0) − 1]L̃n+2

,

ŜNUT =
Ωn

Ωn+1

[

1 + (n+ 1)l̃0L̃

1 + (n+ 1)l̃0(L/R0)

](n+3)/(n+4)
Ṽ

L̃n+2

(

L

R0

)n+2

,
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F̂NUT =
n+ 1

nn

(T̃ n+4
NUT − 1)n(Ã− Ṽ )

l̃n0 L̃
n+1

,

T̂NUT =
Ωn

(n + 1)n+1Ωn+1

(

T̃ n+4
NUT − 1

)n+2 Ã− Ṽ

l̃n+2
0 L̃n+2

, (3.18)

where T̃NUT := TNUT/Tc, and L̃(λ), Ã(λ), and Ṽ (λ) are the dimensionless variables defined

in eq. (3.17). For each value of l̃0, which should be specified, we have thermodynamic

relations, Ŝ = Ŝ(Ê) and F̂ = F̂ (T̂ ), implicitly via the non-uniformness parameter λ ∈
(0, 1), (see also Footnote 7).

Now, we have expressed all thermodynamic variables as functions of the parameter λ

in the integration form. Although the integrations in eq. (3.17) are of course finite, the

integrands diverge at the both ends of the integration range since U(w±) = 0. Therefore,

one needs some manipulations for an accurate numerical integration, especially in the

highly deformed regime λ≪ 1. We present some technical prescriptions making it possible

to figure the fine structures of phase diagrams in appendix A.

4 Phase structure

In the previous section, we have described the necessary thermodynamic variables of each

phase by the appropriate parameters: the uniform tube is parameterized by r0/L ∈ [0,∞);

the spherical ball by R0/L ∈ [0, 1/2]; and the non-uniform tube by λ ∈ (0, 1). To draw

phase diagrams, we have to specify the undetermined parameter l̃0 = l0/L = σ/(ρ0L).

Although we are treating the sharp boundary as a fluid surface, in reality the boundary

surface has a thickness of order T−1
c ∼ σ/ρ0 = l0 [3, 4]. Therefore, we obviously should

work in the limit l0 ≪ L, where the thickness of the boundary can be ignored (except for

highly deformed configurations). Otherwise higher-derivative contributions to the surface

stress tensor would dominate. Hence, we take l̃0 = 1.0 × 10−2 in all concrete examples

hereafter. It should be stressed, however, that the qualitative aspects of the phase diagrams

do not depend on a specific choices of parameter l̃0. In particular, we have confirmed that

the critical dimensions which we will find do not change for other choice of l̃0 within the

range of 1.0 × 10−2 ≤ l̃0 . 1. It is noted that such a choice of small l̃0 corresponds to

0 < TRP/Tc − 1 ≪ 1 as one can see from eq. (3.10). That is, we only consider the plasma

just above the critical temperature Tc.

4.1 Microcanonical ensemble: Ŝ = Ŝ(Ê)

First we discuss the phase transitions among the plasma lumps in the microcanonical en-

semble. Hence, we consider the Ê-Ŝ relation. According to the behaviors of each phase

curve, e.g., the number of cusps appearing in the Ê-Ŝ diagram here, we divide the di-

mensions into three groups, i.e., 4 ≤ d ≤ 9, 10 ≤ d ≤ 12, and d ≥ 13. We now discuss

the possible phase transitions between the three phases (a spherical ball, and uniform

and non-uniform tubes) with the criterion that the maximum entropy state for a fixed

energy is favored.
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d = 5

 

Figure 3. The energy-entropy diagram for d = 5, containing the phases of the spherical ball (SB,

blue-solid line), uniform tube (UT, black-dashed curve), and non-uniform tube (NUT, red-solid

curve with small circles of data). The maximum entropy state for a given energy is favored. There

is no cusp on the non-uniform tube phase, which is the case for 4 ≤ d ≤ 9.

4.1.1 4 ≤ d ≤ 9

In this first class of dimensions, the branches of the uniform tube and spherical ball intersect

at the point labeled by A in figure 3. The spherical ball always has a larger entropy than

the critical tube.

From figure 3, one can see that the branch of non-uniform tubes emerges from the

Rayleigh-Plateau critical point, located at Ê = 1, and reaches the end of the spherical ball

branch located at the point E, where the ball ‘touches itself’ at the boundary z = ±L/2.
The most important point is that the non-uniform tube branch always has a smaller entropy

than the other two. Thus, the phase diagram suggests that the non-uniform branch is never

favored. Suppose that we have a fat uniform tube (i.e., large Ê) and decrease its energy Ê.

As Ê decreases, the uniform branch meets the spherical ball branch at the point A, and at

this point the uniform tube transits to a ball with a discontinuous jump in configuration.

This transition is of first order.

Here, we can see that the energy-entropy diagram in d = 5 is quite similar to the mass-

entropy digram of the black hole-black string system in the asymptotically locally flat 5

and 6 dimensional Kaluza-Klein space (see figure 6 in [16]). Only one apparent difference

is that the localized phase, i.e., the spherical plasma ball does not deform unlike a localized

caged black hole.

4.1.2 10 ≤ d ≤ 12

In this class of dimensions, the phase diagrams are somewhat complicated due to the

appearance of two cusps in the (Ê, Ŝ) diagram. The (Ê, Ŝ) diagrams for d = 10, 11 and 12

are shown in figure 4. The uniform tube and spherical ball intersect in d = 10 at the point

A, while they do not intersect any more in d = 11 and 12 (in fact, ∀d ≥ 11). The spherical

ball has a larger entropy than the critical tube in d = 10 and 11, while this is not the case

in d = 12 (in fact, ∀d ≥ 12). As can be seen from these observations, there appear rich and

non-trivial phase structures in these transient dimensions.
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(a) d = 10 (b) d = 11 (c) d = 12

 

 

 

 

 

 

Figure 4. The energy-entropy diagrams for (a) d = 10, (b) d = 11, and (c) d = 12. There appear

two cusps on the non-uniform tube phase in this class of dimensions.

From the fact that the non-uniform branch has two cusps in the (Ê, Ŝ) diagrams, the

non-uniform tube branch can be divided into three branches (i.e., three smooth curves):

the first branch leaves the Rayleigh-Plateau critical point; the second one is connected to

the end point E of the spherical ball branch; the third one is the curve between the first and

the second ones. The first and third branches correspond to the non-uniform tube branch

appearing in the lower dimensions (4 ≤ d ≤ 9). We shall first discuss the case of d = 11.

The non-uniform tube emerges from the Rayleigh-Plateau critical point. Ê increases at

first, however, it turns to decrease, and then to increase again. Eventually the non-uniform

tube branch reaches the end point E of the spherical ball branch. During this change, the

non-uniform tube branch intersects with the uniform tube branch at the point C and with

the spherical ball branch at the point B. Thus, if we begin with a fat uniform tube (i.e.,

large Ê) and decreases Ê, the uniform tube transits to the non-uniform tube at the point

C with a discrete jump in configuration. As Ê decreases further, the non-uniform tube

transits to a spherical ball at the point B with a discrete jump in configuration.

The phase structures of d = 12 is quite similar to that in d = 11. That is, if we begin

with a fat uniform tube and decrease the energy, the favored phases shift as (uniform tube)

→ (non-uniform tube) → (spherical ball). These two phase transitions are accompanied

by the discrete jumps in configuration, and hence they are of first order. However, the

phase structure in d = 10 is different from those of d = 11 and d = 12, although there are

two cusps in all cases. The branches of uniform tube and spherical ball still intersects (at

the point A) . The spherical ball has a larger entropy than the critical uniform tube. As a

consequence, the behavior of the non-uniform tube branch is similar to those in 4 ≤ d ≤ 9

except that two quite small cusps appear at the middle of the branch. That is, if we begin

with a fat uniform tube and decreases the energy, the uniform tube transits to the spherical

ball at the point A. The non-uniform tube has nothing to do with this transition.

4.1.3 d ≥ 13

As mentioned before, the branches of the uniform tube and spherical ball do not intersect

each other in this class of dimensions. The spherical ball phase has a smaller entropy than

the critical uniform tube in this class of dimensions. The cusp near the Rayleigh-Plateau

critical point disappears at d = 13, while the cusp near the spherical ball phase remains
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d = 13

 

 

Figure 5. The energy-entropy diagram for d = 13. There exists one cusp on the non-uniform tube

phase, which is the case for d ≥ 13.

(a) d = 5 (b) d = 10 (c) d = 11

 

 

 

 

 

 

Figure 6. The temperature-free energy diagrams for (a) d = 5, (b) d = 10, and (c) d = 11,

containing the phases of spherical ball (SB, blue-solid line), uniform tube (UT, black-dashed curve),

and non-uniform tube (NUT, red-solid curve with small circles of data). The phase having the

smallest free energy is favored for a given temperature. There is no cusp for d = 5 (in fact,

4 ≤ d ≤ 9), while there exist two cusps for d = 10. One cusp is found in d = 11 (in fact, d ≥ 11).

(we have confirmed this up to d = 15). Therefore, if we begin with a fat uniform tube (i.e.,

large Ê) and decrease Ê, the non-uniform branch meets the Rayleigh-Plateau critical point,

and at this point it smoothly transits to the non-uniform tube, which has a larger entropy.

This transition is not accompanied by a discrete jump in configuration, and therefore is

of second or higher order. As Ê decreases further, the non-uniform branch intersects with

the ball phase at the point B, and transits to a ball. This transition is of first order.

Thus, the smooth transition from the uniform tube to the non-uniform tube is realized

for d ≥ 13. We conclude that the critical dimension in the microcanonical ensemble is

dmicrocan
∗ = 13. Thus, the critical dimension for the gravity dual is expected to be around

Dmicrocan
∗ = dmicrocan

∗ + 2 = 15.8
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4.2 Canonical ensemble: F̂ = F̂ (T̂ )

In the canonical ensemble, according to the number of cusps appearing in the (T̂ , F̂ ) dia-

gram, we again divide the dimensions into three groups (4 ≤ d ≤ 9, d = 10, and d ≥ 11).

The temperature-free energy diagrams for d = 5, 10, and 11 are shown in figure 6. Note that

as mentioned before, the spherical ball phase has a lower bound of temperature, which is re-

alized when the ball touches itself at the boundary. One can see how the transitions between

the three phases occur by repeating discussions similar to those in the previous subsection.

In d = 5, if we begin with a fat uniform tube (corresponding to a small T̂ ) and

increase T̂ , the uniform tube transits to a spherical ball at the point A, which is a first-

order transition. The non-uniform tube is not involved in this transition. This transition

pattern in the canonical ensemble is similar to that in the Kaluza-Klein black hole-black

string system of low dimensions.9

The (T̂ , F̂ ) curve of the non-uniform tube in d = 10 has two cusps. However, the

non-uniform tube branch is always above the uniform tube branch. Therefore, the non-

uniform tube branch has nothing to do with a realistic transition, as the d = 10 case in

the microcanonical ensemble. That is, only the first-order transition from a uniform tube

to a spherical ball occurs (at the point A).

In d = 11, if we begin with a fat uniform tube and increase the temperature, the

uniform tube meets the Rayleigh-Plateau critical point, located at T̂ = 1, and at this

point it transits smoothly to the non-uniform tube, which has a smaller free energy than

the uniform tube phase. This transition is of second or higher order. As the temperature

increases further, the non-uniform tube meets a spherical ball at the point B. At this point,

it transits to a spherical ball via a first-order transition.

In the canonical ensemble, the critical dimension at and above which the smooth

transition from the uniform to non-uniform tube phases is realized is dcan
∗ = 11. Hence, the

critical dimension of the dual black strings is expected to be around Dcan
∗ = dcan

∗ + 2 = 13.

The patterns of the phase transitions in both microcanonical and canonical ensembles

are summarized in table 1.

5 Summary and discussion

Adopting the equation of state for the fluid obtained by the Scherk-Schwarz compactifica-

tion of (d+1)-dimensional conformal field theory, we have investigated the thermodynamic

properties of the ‘deconfined gluon plasma’ lumps, which are expected to be dual to black

holes and strings localized in the IR of AdSd on the Scherk-Schwarz and Kaluza-Klein

circles. We have invoked the fluid/gravity correspondence in order to predict the phase

8 Here, we adopt the definition of critical dimension by Sorkin [17]. However, if we define a critical

dimension, from a non-perturbative viewpoint, by the dimension at and above which the transition from a

uniform tube (or uniform black string) to a non-uniform tube (or non-uniform black string) is realized, we

find Dmicrocan
∗

= 13.
9We could not find literature in which the temperature-free energy diagram of the black hole-black

string system is presented based on actual numerical data. But, see figure 1 in [6] for a temperature-free

energy diagram in 10 dimensions speculated from a perturbation analysis, which exhibits a similar behavior

to figure 6(a).
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Spacetime Dimension on Fluid Side: d = n + 3 4 - 9 10 11 12 13 - . . .

Transition Type UT −→ SB UT −→ NUT −→ SB

Microcanonical Order of Transition 1st 1st & 1st ‘2nd’ & 1st

No. of Cusps in (Ê, Ŝ) 0 2 1

Transition Type UT −→ SB UT −→ NUT −→ SB

Canonical Order of Transition 1st ‘2nd’ & 1st

No. of Cusps in (T̂ , F̂ ) 0 2 1

Spacetime Dimension on Gravity Side: D = d + 2 6 - 11 12 13 14 15 - . . .

Table 1. Diverse patterns of the phase transitions among the uniform tube (UT), non-uniform

tube (NUT), and spherical ball (SB) in the microcanonical and canonical ensembles. The ‘2nd’

means that the order of transition may be either second or higher.

diagrams of the AdS black holes and strings. We have found that those phase diagrams are

qualitatively similar to those of the black hole-black string system in the asymptotically lo-

cally flat Kaluza-Klein space. These results are not surprising in the sense that it had been

known that the phase structure of the black hole-black ring system in AdS5 (AdS6) with

Scherk-Schwarz compactification is qualitatively similar to that of the black hole-black ring

system in the 5(6)-dimensional flat background [4, 5]. However, there is as yet no clear ex-

planation for the agreement between the phase structures of such distinct systems. Further-

more, the critical dimensions found in this paper (Dmicrocan
∗ = 15 and Dcan

∗ = 13) are ‘very

close’ (indeed equal in the canonical ensemble) to the ones in the asymptotically locally flat

Kaluza-Klein space (Dmicrocan
∗KK = 14 and Dcan

∗KK = 13) in the respective ensembles [17, 18].

This closeness/coincidence, respectively, may stem from a universality of critical dimen-

sion, or there may exist other unknown reasons. As mentioned in the Introduction, the

bulk duals may have a non-trivial dependence on the holographic radial coordinate u. Fur-

thermore, the distribution of the size of the Scherk-Schwarz circle on horizon cannot be

determined a priori before solving the Einstein equations. However, the u-dependence as

well as the distribution of θ-circles may be simply uniform in the limit of the large black

holes/strings for some reason, and in this case the phase structures would resemble those

of the Kaluza-Klein system. It would be interesting to clarify the reason for the qualitative

agreement, by solving the Einstein equations to find the gravity duals explicitly.

Next, we comment on the validity of our calculation, in particular, under what condi-

tions the effective fluid description of the field theory is valid. One condition is that the

length scale over which the temperature and pressure vary must be larger enough than the

mean free path of quasiparticles of the system, which is of the same order as the inverse

of the deconfinement temperature, T−1
c (in the large ’t Hooft coupling limit) [1, 4]. In

our system, the temperature and pressure are constant throughout the configurations, and

this condition holds. Another condition is that the temperature must not be far from the

critical temperature. Otherwise, it is no longer valid to assume that the surface tension

is a constant, whose value was implicitly assumed to be that at the critical temperature

σ = σ(Tc) in this paper. From figure 6, we find that the temperature of non-uniform

tubes always satisfies TNUT/TRP = O(1). Since we have set TRP & Tc (by taking l̃0 ≪ 1),

TNUT/Tc = O(1) holds for all configurations near the transition points we are interested in.
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Finally, the radius of curvature of the fluid surface in all directions must be much larger than

the thickness of the surface, which is of order T−1
c . If this does not hold, higher-derivative

contributions to the surface stress tensor must be included. Since we have discussed the

case L ≫ l0 = σ/ρ0 ∼ T−1
c , we can safely ignore the thickness of the surface. However,

the waist of non-uniform tube can become arbitrarily thin in the limit λ = r−/r+ → 0,

where the thickness of the surface cannot be ignored. Thus, the transition process from a

non-uniform tube to a spherical ball could be modified by higher-derivative contributions.

One may wonder whether this problem can be resolved by a field theoretic approach.

One may object that the critical dimensions found in this paper are too large to occur in

a realistic setting such as M/String theory, and cannot describe reality. However, a critical

dimension at and above which a stable non-uniform phase appears will depend on various

factors of the system under consideration. For instance, the critical dimension for boosted

black strings is expected to be significantly lower for highly-boosted strings [19]. Taking

into account the fact that a large black ring [20] is regarded as a boosted black string, it

is expected that there is a stable undulating black ring phase even in low dimensions such

as 5 and 6. Therefore, it would be quite interesting to investigate the existence of the

Rayleigh-Plateau instability for rotating plasma rings [4, 5] as well as its possible nonlinear

consequences.10 In a similar vein, it would be also interesting to investigate the Rayleigh-

Plateau instability of ultra-spinning plasma balls (see [22] for a related observation on the

gravity side), and to examine the (in)stability of the non-uniform tube phases obtained

in this paper. These analyses may provide holographic interpretations of the stability of

higher dimensional black holes.
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A Manipulations for accurate numerics

The integrands in eq. (3.17) diverge since U(w±) = 0. Therefore, one needs some manipu-

lations to numerically integrate them accurately, which we describe here.

The variables in eq. (3.17), L̃(λ), Ã(λ), and Ṽ (λ), can be written as

X̃(λ) =

∫ w+

w−

dw
ψX(w)

√

−U(w)
, (X = L,A, or V ), (A.1)

where ψX(w) is a certain regular function, i.e., ψL(w) := 2, ψA(w) := 2wn
√

1 − U(w),

or ψV (w) := 2wn+1. Using the explicit form of the potential U(w), one can write the

integral as

X̃(λ) =

∫ w+

w−

dw
(wn+1 +K)ψX(w)

√

(wn + wn+1 +K)(w+ − w)(w − w−)g(w)
, (A.2)

where we have defined (n− 1)-st order polynomial g(w) by

g(w) =

n−1
∑

m=0

gmw
m :=

wn+1 − wn +K

(w − w+)(w − w−)
. (A.3)

Comparing the coefficients of both sides of eq. (A.3), we have a recursion relation of gm,

gm − (w+ + w−)gm+1 + w+w−gm+2 = 0, (0 ≤ m ≤ n− 3),

g0 =
K

w+w−
, g1 =

(w+ + w−)K

(w+w−)2
, gn−2 = w+ +w− − 1, gn−1 = 1. (A.4)

This recursion relation is solved as

gm =
gn−2 − w−gn−1

w+ − w−
wn−1−m

+ − gn−2 − w+gn−1

w+ − w−
wn−1−m
− , (2 ≤ m ≤ n− 3). (A.5)

Using the explicit expressions of K and w±, and eq. (A.4), we obtain the final expression,

gm = (1 − λm+1)(1 − λn)n−2−m

(

λ

1 − λn+1

)n−1−m

, (0 ≤ m ≤ n− 1). (A.6)

Then, we change the integration variable by

w =
w+ + w−

2
+
w+ − w−

2
ξ. (A.7)

Thus, the integral (A.1) is written as

X̃(λ) =

∫ 1

−1
dξ

(wn+1 +K)ψX(w)
√

(wn + wn+1 +K)(1 − ξ2)g(w)
, (A.8)

where w is regarded as the function of ξ by eq. (A.7), and g(w) is given as the polynomial

through eqs. (A.3) and (A.6). Finally, we use the following expressions for (K,w±) to

reduce the round-off error, which are equivalent to the original definitions (3.16),

w+ =

∑n−1
m=0 λ

m

∑n
m=0 λ

m
, w− =

∑n−1
m=0 λ

m+1

∑n
m=0 λ

m
, K =

(

∑n−1
m=0 λ

m+1
)n

(
∑n

m=0 λ
m)n+1 . (A.9)

We find that the expressions (A.8) and (A.9) significantly reduce the numerical errors and

make it possible to obtain non-uniform tube solutions, even for λ ≪ 1. A mathematica

notebook is available at the author’s website, http://www.phys.huji.ac.il/∼umpei/.
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d = n + 3 4 5 6 7 8 9 10 11 12 13 14

Λ 3.142 2.221 1.814 1.571 1.405 1.283 1.187 1.111 1.047 0.9935 0.9472

Table 2. Numerical values of the slenderness parameter, eq. (B.1).

B Justification and interpretation of cusp structures

Here, we argue that the cusp structures observed in the phase diagrams are not numerical

artifacts. The phase curves were obtained by numerical integration of eq. (A.8), which

was done with NIntegrate in the mathematica code. We confirmed the convergence

of integrated values by changing the parameters of AccuracyGoal, PrecisionGoal, and

WorkingPrecision. That is, the digits required to draw the fine structures of phase dia-

grams such as the cusp structure do not change against the change of these parameters. It

is noted that such a convergence is made rapid by virtue of the manipulations described in

appendix A. The fact that the curve of non-uniform tube phase approaches the Rayleigh-

Plateau critical point and the tip of the spherical ball phase at the ends of curve supports

our numerics independently.

We also note that the existence of cusp structures, especially during the transient

dimensions discussed in sections 4.1.2 and 4.2, is not inconsistent with our conclusion that

the phase structure of black strings and black holes in the Scherk-Schwarz compactified

AdS is similar to that of the black hole-black string system in the asymptotically locally

flat Kaluza-Klein space. That is, the critical dimensions known in the Kaluza-Klein black

hole-black string system [17, 18] were predicted by higher-order perturbations, which tells

us the behaviors of a phase curve only near the Gregory-Laflamme critical point. Therefore,

although the critical dimension of Kaluza-Klein black string has been known to be D∗,KK =

14 in the microcanonical for example, the possibility is not excluded that the non-uniform

black string branches in DKK = 12 and DKK = 13 behave like the curves of non-uniform

tube in figure 4 (note that the fully non-linear behaviors of non-uniform black string phase

curves have been obtained for DKK ≤ 11 in [23], but such a behavior was not observed).

Therefore, the cusp structures in the transient dimensions found in this paper are not

only consistent with the known gravitational calculations but also suggest an important

lesson that a critical dimension should be determined non-perturbatively, or lesson that

the critical dimension defined by the smooth transition from the uniform branch to non-

uniform branch is not enough to know the global structure of a phase diagram. It would

be interesting to perform numerical analyses to obtain the fully non-linear behaviors of

non-uniform black strings for DKK = 12 and 13, although their difficulty was one of the

original motivations to work on fluids in this paper.

In ref. [11], we found the critical dimension at and above which the non-uniform tube

branch emanates from the Rayleigh-Plateau critical point with decreasing volume V for a

fixed period L, of which existence is related to the critical dimension in the thermodynamic

phase diagrams obtained in this paper. We found a simple criterion whether the non-

uniform branch increases or decrease its volume near the Rayleigh-Plateau critical point
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as follows. Let us define a ‘slenderness’ parameter of the critical uniform tube,

Λ :=
LRP

2r0
=

π√
n
. (B.1)

We may say that a critical tube is slender, say, if Λ > 1, while one is fat if Λ < 1. The

numerical values of this parameter are given in table. 2. From the table, the critical tube

is found to be slender for 4 ≤ d ≤ 12, while fat for d ≥ 13. On the other hand, the

non-uniform tube branch increases its volume for 4 ≤ d ≤ 12, while decreases it for d ≥ 13

near the critical point (see figures 2 and 4 in [11]). The above agreement of two threshold

dimensions seems not to be just a coincidence from a simple geometric consideration: the

non-uniform tube branch emanating from a slender critical tube has to increase its volume

for a fixed period L in order to approach a spherical ball, while one emanating from a

fat critical tube has to decrease its volume. Thus, the slenderness provides us a simple

criterion to forecast the behavior of non-uniform tube around the Rayleigh-Plateau critical

point, and our numerical results support this geometric expectation and fit our intuition.

Finally, it should be stressed that the transient behaviors of non-uniform tube observed

in figure 4 (and also figure 6) are quite natural in that the drastic change of phase structure

between the lower dimensional class (4 ≤ d ≤ 9) and higher dimensional class (d ≥ 13) was

‘smoothly interpolated’ by the appearance of the ‘swallowtail’ (i.e., the part of the curve

between the pair of two cusps) at d = 10 and its subsequent growth at d = 11, 12. It would

be interesting to regard dimension d as a fictitious continuous parameter and perform the

same calculations to obtain phase diagrams for non-integer ‘dimensions’ 9 ≤ d ≤ 13, which

would show us a continuous change of phase structure.
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